CS/디지털영상처리 21

[디지털영상처리] Morphological Image Processing (1)

Morphology 개요 모폴로지(Morphology)는 이미지의 구조와 형태를 분석하고 처리하는 방법론을 의미한다. 이는 기본적으로 이미지의 구성 요소들을 추출하고 나타내는 데 유용한 도구로 사용되며, 특히 이미지의 경계와 골격 같은 영역의 형태를 표현하고 기술하는 데 중요한 요소들이 포함된다. 또한, 모폴로지는 이미지의 전처리나 후처리 과정에도 활용되기도 한다. 이번 시간에는 모폴로지의 대표적인 기술인 침식(Erosion)과 팽창(Dilation), 오프닝(Opening)과 클로징(Closing)에 대해 배워보도록 하겠다. 본문 Set Theroy 모폴로지를 설명하기에 앞서, 형태학적인 연산의 범위(픽셀)를 제한하기 위해 집합론을 정의해야 한다. 즉, 이미지를 픽셀의 집합으로 간주하고, 각 픽셀을 좌..

[디지털영상처리] Color Image Processing (2)

본문 Pseudocolor Image 가색상(Pseudocolor) 이미지 처리는 단색 또는 흑백 이미지에 색상을 매핑하여 시각적으로 이해하기 쉽게 하는 방법이다. 예를 들어, 위와 같이 위성사진을 촬영한 결과물에 가색상을 입힌다고 가정해 보자. 좌측의 위성사진에 기온, 수심, 등고선 등의 지표의 밝기(Intensity)에 따라 사전에 정의해 둔 색상을 매핑하면 우측의 그림처럼 바뀐다. 즉, 위의 그래프처럼 밝기 값에 따라 R/G/B에 해당하는 값을 할당하는 사전에 정의된 함수를 이용한다. 이러한 함수는 일반적으로 사용자가 찾는 것이 아닌, 누군가 이미 정의한 coloramp을 사용한다. I = rgb2gray(imread('bone.jpg')); figure(1); imshow(I); colorbar;..

[디지털영상처리] Color Image Processing (1)

컬러 이미지 처리 개요 지금까지 이미지 처리를 배우며 대부분 흑백 이미지만 사용하였다. 이는 흑백 이미지가 이미지 처리의 기본 개념을 파악하기 용이하기 때문인데, 컬러 이미지에 비해 데이터 양이 적고 처리 속도가 빠르기 때문이다. 이번 시간에는 색상에 대한 개념부터 컬러 이미지 처리에 대한 전반적인 개념을 배우는 시간을 가지도록 해보자. 본문 색이란? 색(Color)이란 빛의 성질 중 하나로, 빛의 파장 분포에 의해 결정되며 인간의 눈과 뇌에 의해 인식되는 것을 의미한다. 이때 물리적인 특성보다는 시각적 경험에 의존하는 심리적 특성이다. 이때 빛과 색을 혼동하는 경우가 많은데, 일반적으로 빛(Light)은 물리적인 에너지의 형태로서 색을 생성하는 물리적인 원인이며, 색은 그 결과로써 인간이 인식하는 현상..

[디지털영상처리] Filtering in Frequency Domain (3)

본문 Zero Padding 디지털 영상 처리에서 이미지를 주기적인 신호로 간주하고 처리한다. 위의 그래프에서 왼쪽에 있는 것이 원래 신호고, 오른쪽에 있는 그래프가 이미지가 주기적이라는 것을 가정한 상태다. 이는 이미지의 한쪽 끝과 다른 쪽 끝이 서로 연결되어 있다고 가정하는 것과 동일하다. 이러한 처리 방식에서는 이미지의 오른쪽 끝과 왼쪽 끝, 상단과 하단이 서로 감싸는 Wraparound Error가 발생할 수 있다. 즉, 컨볼루션 연산 중 이미지의 한쪽 끝의 값이 반대편 끝에 영향을 미친다. 위의 두 신호 f(m)과 h(m)에 대해 컨볼루션 연산을 적용하는 과정을 통해 왜 이러한 일이 발생하는지 알아보자. 컨볼루션의 정의에 따라 h(m)을 y축에 대해 대칭시키면 다음과 같이 표현할 수 있을 것이다..

[디지털영상처리] Filtering in Frequency Domain (2)

본문 2D DFT Properties (1) 지난 시간엔 샘플링을 위한 조건에 대해 배웠었다. 이번 시간에는 이차원에서의 이산 푸리에 변환의 중요한 성질들을 다뤄보도록 하겠다. 위의 표에서 주목해야 할 점은 Translation이다. DFT를 적용한 결과는 일반적으로 저주파수에서 고주파수로 정렬되어 나타난다. 이는 주어진 이산 신호에 대해 직류 성분(가장 낮은 주파수)부터 높은 주파수의 성분까지 차례대로 계산되기 때문이다. 결과적으로 DFT의 출력은 주파수가 증가하는 순서로 배열된다. 그러나 이러한 배열은 직관적으로 이해하기 어려우므로, 이미지의 DFT 결과에서 저주파수 성분을 중앙에 위치시키기 위해 반주기씩 이동시키는 과정이 적용된다. 이 과정을 통해 저주파수 성분이 중앙으로 이동하고, 고주파수 성분은..

[디지털영상처리] Filtering in Frequency Domain (1)

주파수 영역에서의 필터링 개요 지난 시간까지는 이미지에 푸리에 변환을 적용하기 위한 기초적인 이론들을 배웠었다. 그리고 이미지에 푸리에 변환을 적용했을 때 어떻게 되는지도 간단한 실습을 통해 확인할 수 있었다. 이번 시간에는 필터링을 하기 위한 조건들에 대해 배워보도록 하겠다. 본문 Nyquist-Shannon Sampling Theroem 푸리에 변환을 적용한 주기적인 임펄스 열은 위의 수식이 나온다고 했었다. 샘플링 간격 △T는 연속적인 신호를 디지털 신호로 변환할 때 신호를 정확하게 복원할 수 있는지를 결정한다. 이러한 대역 제한 신호(Bandlimited Signal)에 대해, Nyquist-Shannon 샘플링 정리는 연속 신호를 디지털로 변환할 때 필요한 최소 샘플링 속도를 정의한다. 즉, 샘..

[디지털영상처리] Fourier Theory (2)

본문 Impulse Train 결국 우리가 다루는 이미지는 샘플링을 거친 것을 보는 것이다. 즉, 연속적인 실제 세계를 이산적인 픽셀로 변환한 것이므로, 이 과정에서 임펄스 열을 사용하여 모델링하는 과정이 필요하다. 이번 시간에는 이러한 임펄스 열에 푸리에 급수와 푸리에 변환을 적용하면 어떻게 되는지 알아보자. 다음과 같이 시간축 t에서 간격이 △T인 임펄스 열(Impulse Train)이 있다고 가정해 보자. 이를 이용해 푸리에 급수를 표현하면 다음과 같이 나타낼 수 있다. 여기서 푸리에 계수를 구해보면 모든 n에 대해 1/△T이 된다는 점을 이용하여 임펄스 열을 다음과 같이 표현할 수 있다. 이번에는 푸리에 변환을 적용해 보자. 아래 수식에 따라 푸리에 변환을 적용하면 주파수 u = n/△T일 때만 ..

[디지털영상처리] Fourier theory (1)

푸리에 이론 개요 이미지에서 주파수(Frequency)는 이미지의 공간적 변화가 얼마나 빠르게 발생하는지를 나타내는 척도다. 이미지에서 이것은 일반적으로 픽셀 간의 밝기 변화의 정도로 표현되며, 이는 이미지의 세부 사항과 가장자리의 고주파수 성분과, 부드러운 영역의 저주파수 성분으로 구분된다. 이번 시간에는 시간 도메인에서의 이미지가 아닌, 주파수 도메인에서 이미지를 다루기 위해 필요한 푸리에 변환 이론을 배워보도록 하자. 본문 푸리에 이론을 쓰는 이유 푸리에 이론(Fourier Theory)은 일반적으로 시간 영역에서 다루기 힘든 내용을 주파수 영역으로 넘겨서 해결할 때 사용한다. 예를 들어, 시간 도메인에서 이미지에 필터를 적용하는 컨볼루션은 각 입력 샘플에 대해 커널의 모든 값과 곱셈을 수행한 후,..

[디지털영상처리] Image Sharpening (3)

Image Sharpening based on First-Order Derivatives and Summary 개요 이전까지 이미지 샤프닝을 위해 라플라시안과 같은 이차 미분 필터를 사용하거나, 원본 이미지로부터 LPF를 사용하여 흐릿한 이미지를 만든 다음 빼서 샤프닝 마스크를 만드는 Unsharp Masking을 사용하였다. 이차 미분을 이용한 방법은 세밀한 에지를 감지할 수 있으나, 노이즈에 민감하고, USM은 매개변수를 조절하여 샤프닝의 정도를 세밀하게 조정할 수 있으나, 계산 과정이 복잡하다는 단점이 있다. 이번 시간에는 수평과 수직 방향의 밝기 변화율을 측정하여 간단하고 빠른 계산을 보장하는 일차 미분을 이용한 샤프닝 필터에 대해 알아보도록 하겠다. 본문 원리 앞서 라플라시안을 설명할 때, Gr..

[디지털영상처리] Image Sharpening (2)

Unsharp Masking 개요 지난 시간에 배운 라플라시안 샤프닝 기법과 마찬가지로 오늘 배울 Unsharp Masking도 밝은 부분을 더 밝게 하고 어두운 부분을 더 어둡게 하여 이미지의 대비를 강조한다. 하지만 두 방법의 차이점은 Unsharp Masking이 원본 이미지를 블러 처리하여 생성된 흐릿한 이미지와 원본 이미지 사이의 차이를 이용한다는 점이다. 이 차이 정보를 원본 이미지에 다시 더해주어 세부 사항을 강조하고 이미지의 선명도를 향상한다. 본문 원리 다음과 같이 이미지의 경계 부분을 그래프로 그려보자. 지난 시간에도 다뤘지만, 기울기가 급격하게 변화하는 부분은 밝기가 변하는 지점으로, 경계가 명확해지는 곳이다. 이미지에 가우시안 필터, 평균 필터, 중앙값 필터 등의 블러 필터를 적용하..